Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719116

RESUMO

Background: Previous studies have discussed the effects of grazing and house feeding on yaks during the cold season when forage is in short supply, but there is limited information on the effects of these feeding strategies on Jersey cows introduced to the Tibetan Plateau. The objective of this study was to use genomics and metabolomics analyses to examine changes in rumen microbiology and organism metabolism of Jersey cows with different feeding strategies. Methods: We selected 12 Jersey cows with similar body conditions and kept them for 60 days under grazing (n = 6) and house-feeding (n = 6) conditions. At the end of the experiment, samples of rumen fluid and serum were collected from Jersey cows that had been fed using different feeding strategies. The samples were analyzed for rumen fermentation parameters, rumen bacterial communities, serum antioxidant and immunological indices, and serum metabolomics. The results of the study were examined to find appropriate feeding strategies for Jersey cows during the cold season on the Tibetan plateau. Results: The results of rumen fermentation parameters showed that concentrations of acetic acid, propionic acid, and ammonia nitrogen in the house-feeding group (Group B) were significantly higher than in the grazing group (Group G) (P < 0.05). In terms of the rumen bacterial community 16S rRNA gene, the Chao1 index was significantly higher in Group G than in Group B (P = 0.038), while observed species, Shannon and Simpson indices were not significantly different from the above-mentioned groups (P > 0.05). Beta diversity analysis revealed no significant differences in the composition of the rumen microbiota between the two groups. Analysis of serum antioxidant and immune indices showed no significant differences in total antioxidant capacity between Group G and Group B (P > 0.05), while IL-6, Ig-M , and TNF-α were significantly higher in Group G than in Group B (P < 0.05). LC-MS metabolomics analysis of serum showed that a total of 149 major serum differential metabolites were found in Group G and Group B. The differential metabolites were enriched in the metabolic pathways of biosynthesis of amino acids, protein digestion and absorption, ABC transporters, aminoacyl-tRNA biosynthesis, mineral absorption, and biosynthesis of unsaturated fatty acids. These data suggest that the house-feeding strategy is more beneficial to improve the physiological state of Jersey cows on the Tibetan Plateau during the cold season when forages are in short supply.


Assuntos
Antioxidantes , Rúmen , Animais , Feminino , Bovinos , RNA Ribossômico 16S/genética , Tibet , Metaboloma
2.
Animals (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428394

RESUMO

Maize silage has a high demand for fertilizer and water. As an unconventional feed resource, mulberry silage has the potential to replace most maize silage and to alleviate the shortage of roughage in the mutton sheep industry in China. The purpose of this experiment was to study the effect of the replacement of maize silage and soyabean meal with mulberry silage in the diet of Hu lambs on growth performance, serum biochemical indices, slaughter performance, and meat quality. Ninety-six healthy Hu lambs were randomly divided into four groups with six replicates per group and four lambs per replicate. The amounts of 0, 20, 40, and 60% of maize silage were replaced by mulberry silage in each group (denoted as CON, L, M, and H, respectively). The results showed that replacing maize silage with mulberry silage had no significant effect on the growth performance or the slaughter performance of Hu lambs (p > 0.05). Feeding Hu lambs with mulberry silage significantly reduced serum glucose (GLU) and the blood urea nitrogen (BUN) content (p < 0.05), and it increased the content of ether extract (EE) in the longissimus dorsi muscle (p < 0.05). Meanwhile, the percentage of EAA in the M and H groups was significantly lower than that in the CON and L groups (p < 0.05). In addition, in the fatty acid profile, the percentage of C16:1 in the M group was significantly increased, while the percentage of C18:0 and C20:0 were significantly decreased (p < 0.05). Based on these findings, it was recommended that 20−40% of maize silage be replaced by mulberry silage in the diet of Hu lambs.

3.
Animals (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230362

RESUMO

Ruminal acidosis often occurs in production, which greatly affects animal health and production efficiency. Subacute rumen acidosis (SARA) occurs when rumen pH drops rapidly to 5.5−5.8, and acute rumen acidosis (ARA) occurs when rumen pH drops below 5.0, but the molecular regulation mechanism of the rumen epithelium after the rapid decrease in pH is still unclear. Bovine rumen epithelial cells (BRECs) were cultured at pH = 7.4 (control), 5.5 (SARA), and 4.5 (ARA). Transcriptome and metabolomic methods were used to obtain the molecular-based response of BRECs to different pH treatments; pH = 4.5 can significantly induce apoptosis of BRECs. The RNA-seq experiments revealed 1381 differently expressed genes (DEGs) in the control vs. SARA groups (p < 0.05). Fibroblast growth factor (FGF) and tumor necrosis factor (TNF) were upregulated 4.25 and 6.86 fold, respectively, and TLR4 was downregulated 0.58 fold. In addition, 283 DEGs were identified in the control vs. ARA comparison (p < 0.05), and prostaglandin-endoperoxide synthase 2 (PSTG2) was downregulated 0.54 fold. Our research reveals that the MAPK/TNF signaling pathway regulates the inflammatory response of BRECs. Metabolomics identified 35 biochemical compounds that were significantly affected (p < 0.05) in control vs. SARA and 51 in control vs. ARA. Bioinformatics analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database revealed that drug metabolism-cytochrome P450 metabolic and alpha-linolenic acid metabolism changes occurred. These transcriptional and metabolic changes are related to the adaptation of BRECs to low-pH stresses. In conclusion, the combined data analyses presented a worthy strategy to characterize the cellular, transcriptomic, and metabonomic adaptation of BRECs to pH in vitro. We demonstrated transcriptional expression changes in BRECs under pH stress and activation of the molecular mechanisms controlling inflammation.

4.
Front Vet Sci ; 9: 864320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903131

RESUMO

This study aimed to assess the effects of feeding with different forage sources and starter concentrations on growth performance, nutrient digestibility, ruminal fermentation, and the microbial community in weaned Holstein calves. A total of 54 Holstein calves (body weight (BW) = 77.50 ± 5.07 kg; age = 70 ± 2.54 days) were assigned to 1 of 3 treatment groups (n = 18/group) that were offered diets with different forages: (1) peanut vine (PV), (2) oat hay (OH), or (3) an alfalfa hay + oat hay combination (alfalfa hay:oat hay =1:1, AO). Starter and forage intakes were recorded daily, while BW and growth parameters were assessed at 15-day intervals. The apparent digestibility of nutrients was determined. Ruminal fluid samples were collected and used to detect relevant indicators. A difference was observed for the forage × age interaction for all feed, nutrient intake, BW, ADG, and body structure parameters (P < 0.05). The final BW, average daily feed intake (ADFI), and average daily gain of the PV calves were higher than those of calves from the other groups (P < 0.05). The ruminal propionate concentration evidently increased in calves of the AO group (P < 0.05). The abundances of Rikenellaceae_RC9_gut_group and Shuttleworthia showed distinct responses to feeding with different forages (P < 0.05) at the genus level. The relative abundance of Shuttleworthia was negatively related to rumen pH and acid detergent fiber digestibility (P < 0.05) and strongly positively related to propionate concentration (P < 0.01). A positive correlation was found between Ruminococcus_1 abundance and butyrate concentration and neutral detergent fiber digestibility (P < 0.05). The relative abundances of Succiniclasticum and Prevotella_7 were negatively related to butyrate concentration (P < 0.05). In conclusion, there was an interaction between the factors (forage × age). The peanut vine used as a forage source promoted a higher starter concentrate intake compared to other diets and increased with the calves' age. The growth performance and rumen bacterial community of the calves were further improved. These results indicate that peanut vine can be used as the main source of forage in the diets of weaned calves.

5.
Animals (Basel) ; 12(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681869

RESUMO

Maize silage has a significant environmental impact on livestock due to its high requirement for fertilizer and water. Mulberry has the potential to replace much of the large amount of maize silage grown in China, but its feeding value in the conserved form needs to be evaluated. We fed Hu lambs diets with 20-60% of the maize silage replaced by mulberry silage, adjusting the soybean meal content when increasing the mulberry silage inclusion rate in an attempt to balance the crude protein content of the diets. Mulberry silage had higher crude protein and lower acidic and neutral detergent fiber contents compared to maize silage. Replacing maize silage and soyabean meal with mulberry silage had no effect on the feed intake and growth rate of Hu lambs. However, the rumen pH increased, the acetate to propionate in rumen fluid increased, and the rumen ammonia concentration decreased as mulberry replaced maize silage and soyabean meal. This was associated with an increase in norank_f__F082 bacteria in the rumen. Rumen papillae were shorter when mulberry silage replaced maize silage, which may reflect the reduced neutral detergent fiber (NDF) content of the original silage. In conclusion, mulberry silage can successfully replace maize silage and soyabeans in the diet of Hu lambs without loss of production potential, which could have significant environmental benefits.

6.
Animals (Basel) ; 12(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268172

RESUMO

The aim of this study was to evaluate peanut shells and rice husks as bedding for dairy cows. We analyzed material properties including dry matter, water holding capacity, pH level and bacterial counts. Bedding treatments were compared with a one-way ANOVA using twelve cows split into three groups. Colostrum microbiota was analyzed by sequencing of the V3-V4 region of the 16S rRNA gene. Dry matter content was higher in rice husks compared with peanut shells. No treatment effects were found for water holding capacity and pH level. Streptococcus agalactia counts in peanut shell bedding were lower than in rice husk bedding, and Pseudomonas aeruginosa counts were not different between beddings. A significant enrichment for Enhydrobacter and Pantoea were detected in the colostrum of cows that used peanut shells compared with other beddings. Colostrum of cows housed on a peanut-rice combination had a greater relative abundance of Pseudomonas and Corynebacterium than those housed on peanut shells or rice husks. Higher numbers of Bacteroides, Akkermansia, Alistipes, Ruminococcaceae_UCG-014, Coriobacteriaceae_UCG-002 and Intestinimona were found in the colostrum of cows housed on rice husk bedding over other bedding types. These results suggest that bedding types were associated with the growth and diversity of colostrum bacterial loads. In addition, dry matter in peanut shells was lower than found in rice husks, but there was also a lower risk of mastitis for peanut shell bedding than other beddings.

7.
Animals (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268218

RESUMO

The aim of the present study was to explore the effects of dietary non-fibrous carbohydrate to neutral detergent fiber (NFC/NDF) ratios on rumen development of calves, and to investigate the mechanisms by integrating of lncRNA and mRNA profiling. Forty-five weaned Charolais hybrid calves [body weight = 94.38 ± 2.50 kg; age = 70 ± 2.69 d] were randomly assigned to 1 of 3 treatment groups with different dietary NFC/NDF ratios: 1.10 (H group), 0.94 (M group) and 0.60 (L group), respectively. The ventral sac of the rumen was sampled for morphological observation and transcriptional sequencing. The average daily gain of calves in the high NFC/NDF ratio group was significantly higher than that in other groups (p < 0.05). Papillae width was largest in high NFC/NDF ratio group calves (p < 0.05). Identified differentially expressed genes that were significantly enriched in pathways closely related to rumen epithelial development included focal adhesion, Wingless-int signaling pathway, thyroid hormone signaling pathway, regulation of actin cytoskeleton and cGMP-PKG signaling pathway. The lncRNA-mRNA network included XLOC_068691 and MOAB, XLOC_023657 and DKK2, XLOC_064331 and PPP1R12A which we interpret to mean they have important regulatory roles in calve rumen development. These findings will serve as a theoretical basis for further analysis of the molecular genetic mechanism of dietary factors affecting rumen development in calves.

8.
Anim Biotechnol ; 33(7): 1480-1491, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33847240

RESUMO

The purpose of this study was to investigate the role of urea-N recycling, rumen bacterial community, and rumen epithelial gene expression in nitrogen utilization of calves. Here, 12 Holstein calves were divided into two dietary treatments: a high-protein diet (HP, 173 g/kg), and a low-protein diet (LP, 125 g/kg). Urea-N kinetics was evaluated using urea-15N15N isotope labeling method. Gene expression in rumen epithelium and liver, bacterial diversity, and metabolites in rumen were characterized using transcriptomic, Illumina HiSeq-based 16S rRNA, and LC/QTOF-MS-based metabolomics, respectively. We demonstrated that the bone weight, dressing percentage, and nitrogen utilization efficiency (NUE) increased in calves fed HP compared with LP. The urea synthesized, eliminated in urine, and return to ornithine cycle were higher in calves fed HP than LP, while the urea-N reused for anabolism were the opposite. Differentially expressed genes participated in amino acid metabolism and molecular transport in rumen epithelium. The increased abundance of bacteria and metabolites involved in protein and/or amino acid metabolism reflected the larger protein utilization in rumen of calves fed HP. In conclusion, the urea-N recycling could not fully compensate for the reduced NUE caused by N deficiency. Rumen bacteria and rumen epithelial metabolism contribute to improving NUE of calves.


Assuntos
Dieta , Rúmen , Animais , Bovinos , Rúmen/metabolismo , RNA Ribossômico 16S/metabolismo , Dieta/veterinária , Ureia/metabolismo , Bactérias/genética , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Ração Animal
9.
PLoS One ; 16(9): e0257417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506606

RESUMO

The purpose of this study was to investigate the effects of oscillating crude protein (CP) concentration diet on the nitrogen utilization efficiency (NUE) of calves and determine its mechanism. Twelve Holstein calves were assigned randomly into static protein diet (SP, 149 g/kg CP) and oscillating protein diet (OP, 125 and 173 g/kg CP diets oscillated at 2-d intervals) groups. After 60 days of feeding, the weights of total stomach, rumen and omasum tended to increase in calves fed OP. The apparent crude fat digestibility, NUE and energy metabolism also increased. In terms of urea-N kinetics evaluated by urea-15N15N isotope labeling method, the urea-N production and that entry to gastrointestinal tended to increase, and urea-N reused for anabolism increased significantly in calves fed OP during the low protein phase. These data indicate that urea-N recycling contributed to improving NUE when dietary protein concentration was low. In addition, the differentially expressed genes in rumen epithelium and the rumen bacteria involved in protein and energy metabolism promoted the utilization of dietary protein in calves fed OP.


Assuntos
Epitélio/microbiologia , Nitrogênio/metabolismo , Ureia/química , Ração Animal/análise , Animais , Bactérias , Biodiversidade , Bovinos , Dieta/veterinária , Proteínas Alimentares/metabolismo , Epitélio/metabolismo , Perfilação da Expressão Gênica , Cinética , Fígado/metabolismo , Masculino , Metabolômica , Oscilometria , RNA Ribossômico 16S/metabolismo , Rúmen , Transcriptoma
10.
Animals (Basel) ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202920

RESUMO

The provision and quality of bedding materials affect the behaviour, welfare, and health of dairy cows. The objective of this study was to evaluate the preference, behaviour, cleanliness, and physiological status of cows on three bedding materials, peanut shells, rice husks, and a combination of two-thirds peanut shells, one-third rice husk. In an initial experiment, 15 nonlactating, pregnant Holstein cows had free access to all 3 bedding treatments for 39 d. Cows spent more time lying down on rice husk (337 min/d) than on peanut-rice combination (212 min/d) and peanut shell (196 min/d) (p < 0.05), and lay down most often on rice husk (4.35 bouts/d) than on peanut shell (2.55 bouts/d) (p < 0.05) but did not differ between peanut shells and peanut-rice combinations in terms of lying time and lying bouts. In Experiment 2, 12 nonlactating cows were used to assess the effects of the 3 bedding materials on dairy cow behaviour, cleanliness, serum indicators, and productivity. The total duration of lying down (PS: 699.1 min/d, PRC: 645.6 min/d, RH: 852.5 min/d), the frequency of bouts of lying down (PS: 8.7 bouts/d, PRC: 7.6 bouts/d, RH: 11.1 bouts/d), and the mean duration of lying bouts (PS: 83.5 min/bouts, PRC: 91.8 min/bouts, RH: 81.4 min/bouts) did not differ between treatments. Similarly, no differences in eating or drinking behaviour of dairy cows were observed. In terms of hygiene, cleanliness scores did not differ between the three bedding materials, but udder and flank cleanliness decreased and improved, respectively. In addition, treatments did not affect serum metabolites or productivity of the cows. In summary, daily behaviour, serum metabolites, and productivity of dairy cows were all within the normal range, and no statistical differences occurred between the three bedding materials, although cows showed a preference for rice husk when given access to all three bedding materials at the same time. Finally, the results suggest that bedding comprised of peanut shells and peanut-rice combinations are all suitable for maintaining the health and comfort of dairy cows.

11.
Front Vet Sci ; 8: 644967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141731

RESUMO

Eucommia ulmoides leaves (EUL) contain a variety of natural bioactive compounds including chlorogenic acid, geniposide acid, and aucubin. These bioactive chemicals improve immune function and regulate lipid metabolism. The aim of this study was to investigate the effects of EUL on the biochemical properties of milk. Twenty Holstein dairy cows were randomly allocated to two groups fed a control (CTR, diet without EUL, n = 10) or EUL (diet containing 3% EUL, dry matter, n = 10) diet for 55 d. At the end of the experimental period (d 55), milk samples were collected and analyzed to determine their composition. Though levels of milk fat, protein, lactose, and total milk solids were similar between the groups, small molecules, metabolites, lipids, and cytokines differed. Compared with the CTR group, the EUL group had an improved cluster of differentiation (CD)4/CD8 ratio (P < 0.05) and lower interleukin (IL)-8 and IL-6 content (P < 0.05). Metabolomics analysis identified 14 metabolites including 7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenoic acid (FC = 3.129), adrenic acid (FC = 2.830), and eicosapentaenoic acid (FC=1.685) as having significantly increased in the EUL group (P < 0.05) while 11 metabolites, including indole-2-carboxylic acid (FC = 0.636), cholic acid (FC = 0.430), and creatine (FC = 0.784) had significantly decreased (P < 0.05). Based on a constructed metabolome map, linoleic acid metabolism had the highest impact value for EUL. A total of 21 lipid classes and 1,094 lipid species were detected in the milk by lipidomic analysis, among which 40 differed significantly between the CTR and EUL groups. The present findings showed that the EUL altered milk composition. Correlation analysis showed that 7Z, 10Z, 13Z, 16Z, 19Z-docosapentaenoic acid, adrenic acid, and eicosapentaenoic acid levels were negatively correlated with those of the inflammatory factors IL-6 and IL-8 (P < 0.05), indicating that EUL improved milk quality by reducing inflammatory factors and increasing the CD4/CD8 ratio. Overall, our data demonstrate that EUL had positive effects on milk antioxidant parameters, immune indices, and micro-composition metabolism, thereby improving milk quality.

12.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 787-796, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33486831

RESUMO

Melatonin (MT) influences lipid metabolism in animals; however, the mechanistic effect of melatonin on liver fat and abdominal adipose deposition requires further clarity. In order to study the effects of melatonin on lipid metabolism, and hepatic fat and abdominal adipose deposition in animals, twenty Sprague-Dawley (SD) rats of 6 weeks of age with similar bodyweight were randomly divided into two groups: control (CTL) and MT-treated (10 mg/kg/day). During a 60-day experiment, food intake and bodyweight were measured daily and weekly respectively. At the end of treatment, blood samples were collected to collect plasma to quantify hormones and metabolic indicators of lipid metabolism. In addition, organ and abdominal adipose depots including liver, and omental, perirenal, and epididymal fat were weighed. Liver tissue was sampled for sectioning, long-chain fatty acid (LCFA) quantification, and gene chip and Real-time quantitative PCR (qPCR) analyses. The results showed that liver weight and index (ratio of liver weight to body weight) in MT group reduced by 20.69% and 9.63% respectively; omentum weight and index reduced by 59.88% and 54.93% respectively, and epididymal fat weight reduced by 45.34% (p = 0.049), relative to CTL. Plasma lipid indices, triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol (TC) with MT treatment decreased significantly compared with the control. Fat and 8 LCFA content in liver in MT group also decreased. Gene chip and qPCR demonstrated that there were 289 genes up-regulated and 293 genes down-regulated by MT. Further analysis found that the mRNA expression of lipolysis-related genes increased, while the mRNA expression of lipogenesis-related enzymes decreased (p < 0.05) with MT. This study concluded that melatonin greatly affected fat deposition, and hepatic LCFA supply and the expression of genes associated with lipogenesis and lipolysis.


Assuntos
Metabolismo dos Lipídeos , Melatonina , Animais , Dieta Hiperlipídica , Expressão Gênica , Gordura Intra-Abdominal , Fígado/metabolismo , Masculino , Melatonina/metabolismo , Melatonina/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Anim Sci J ; 93(1): e13675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35068014

RESUMO

The objectives of this study were to compare the growth performance, ruminal fermentation, and bacterial community of young bulls fed with diets including dried or ensiled peanut vines and to investigate whether the combination of dry peanut vine and corn silage could exhibit better feeding effects. Forty-five young Holstein bulls were selected and fed for 60 days. The total mixed ration (TMR) was formulated as follows: (1) a dry peanut vine-based diet (DPV), (2) a peanut vine silage-based diet (PVS), and (3) a whole-plant corn silage mixed with the DPV (WPCS-DPV). The ratio of dietary concentrate to forage was 50:50. The results showed that the dried and ensiled peanut vines used in beef diet exhibited no difference in the average daily gain of bulls (p = 0.490). The pH of rumen fluid in bulls fed with the WPCS-DPV and PVS diets was lower than that in bulls fed with the DPV diet (p < 0.001). The bulls fed with the DPV diet had increased Ace and Chao1 values of rumen bacterial community compared with bulls fed with the PVS diet (p < 0.05). This study confirmed the feasibility of ensiling as a preservation procedure for peanut vines and provides a reference for its utilization schemes.


Assuntos
Rúmen , Envelhecimento , Ração Animal , Animais , Arachis , Bovinos , Dessecação , Dieta/veterinária , Digestão , Feminino , Fermentação , Lactação , Masculino , Rúmen/metabolismo , Silagem/análise , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...